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Abstract. The simplest matrix model which exhibits multicritical points is carefully ana- 
lysed. We reproduce recent results of potential interest for the non-perturbative theory of 
strings in the region where the orthogonal polynomials were correctly used. However, the 
present analysis holds for the whole parameter space. 

Statistical mechanics models on random lattices are important for the description of 
many systems of condensed matter and also for purely theoretical reasons. In recent 
years an important advance was the formulation of the Ising model on lattices given 
by planar Feynman graphs [1 ,  21. The partition function of the model was written in 
terms of two sets of random matrices and its closed solution in the thermodynamic 
limit was shown to be the large-N limit of the ‘two-matrix model’, solved long ago [3,4]. 

Remarkably, in this formulation, it is sometimes possible to evaluate analytically 
some thermodynamic observables which were not obtained in closed form for the 
corresponding model on a regular, fixed lattice. The q-state Potts model [ 5 ] ,  the O( N )  
model [ 6 ] ,  the spectra of polymers [7] and the ADE models [8] on Feynman graphs 
were similarly formulated in terms of random matrix models. In all these models the 
statistical average over the ensemble of random lattices (the sum over all planar 
Feynman graphs with a fixed number of vertices) is regarded as the effect of the 
fluctuations of bidimensional quantum gravity. The critical coefficients of the statistical 
models are affected by gravity in agreement with the equations derived in the continuum 
approach [9] to conformal two-dimensional theories. 

In the above-mentioned models, the critical coefficients were evaluated at a critical 
point, which is associated with the divergence of the perturbative series of planar 
Feynman graphs occurring, in general, for a negative value of the coupling constant 
that multiplies the highest monomial in the polynomial potential. 

In the simplest one-matrix model the spectral density [lo] is 

( A  ) = mf(~ -2a c A s 2 a  ( 1 )  

where the polynomial f ( A )  is easily evaluated in terms of the potential and is non- 
negative on the compact support of u(A). The critical point mentioned above is 
characterised by the vanishing o f f ( h )  at the border of the support, A = *2a, and it 
takes place for a negative value of the highest coupling constant. The spectral density 
then vanishes more rapidly than predicted by the Wigner semicircle law and the model 
exhibits a high-order phase transition. Several years ago [ 11-14] it was also proved 
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that even the simplest matrix models exhibit a different phase transition: for finite 
negative values of lower-order coupling constants the polynomial f (  A) vanishes for 
values of A inside the support. In this case the solution of the model is given by a 
spectral density whose support is the union of two or more segments. This splitting 
from one band to two (or more) bands, is somehow analogous to the conducting- 
dielectric transition. 

In this letter we describe the phase diagram of the simplest one-matrix model where 
multicritical points may occur. We consider the partition function 

Z(g , ,  g,, g3) = C-’  d M exp -Tr g lM2+& M4+% M 6  1 ”  [ ( N N 

where 

C = d N 2  M exp-(g,lTr M’) i (3) 

and M is a Hermitian N x N matrix. Using a well known procedure [lo], one obtains 
a singular integral equation for the spectral density 

which is solved, in the region of positive couplings, by 

1 
u,(A) = - T [3g3A4+ 2(g2+ 3g3a2)A2 + (8, +4g2a2 + 18g3a4)]. ( 5 )  

The support of the spectral density is the segment -2a s A s 2a where a’ is the unique 
positive solution of the cubic equation 

60g3a6+ 12g2a4+2g,a2- 1 = O .  (6) 
The correlation functions are easily evaluated as moments of the spectral density, and 
the free energy is: 

(7) 

One may call this solution the perturbative solution, since its power expansion in the 
couplings reproduces the planar Feynman graphs of the model. 

We now consider the analytic continuation of the perturbative solution to real 
non-positive values of g, and g2 while keeping g3>0.  This continuation is not 
acceptable as a solution of the model if the spectral density is not positive definite on 
its support. This requirement is fulfilled in region I of the phase diagram in figure 1. 
The line yI in figure 1 is determined by the condition ul(A = 0) = 0, i.e. 

E = - $  5g2 ’ a s - $  =,g,g2a6 + (fg2 -ig:)a4+$gla2 - 5  - 5  log(2g,a2). 

(8) g, + 4g2a2 + 1 8g3 a4 = 0 

with a’ given by (6). 
In the region I1 of figure 1 we obtain a non-perturbative solution u, , (A) of (4) with 

SUPPOI? [-B, -A] U [A, B]: 

1 
U!!( A )  = - [ ( B2 - A ’)(A’ - A’)]’’’lA 1[3g,A ’ +jg,( A’ + B’) + 2g2]. (9) lr 
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Figure 1. The phase diagram of the model in adimensional variables: I is the perturbative 
region, with solution u , ( h )  on a single segment; I 1  is the domain for the two-segment 
solution u , , ( h ) ;  1 1 1  is the domain for the three-segment solution. In the lower right region, 
bounded by yI and y 4 ,  both uI and uII solve the saddle-point equation. 

The square root has the arithmetic (positive) determination, and the extrema of the 
support solve the equations: 

g,+g,(A’+ B 2 ) + ~ g 3 [ ( A 2 + B 2 ) 2 + f ( A 2 - B 2 ) 2 ]  = O  
ig3( B’ - A’)’( B’+ A’) +is2( B’ - A’)’ - 1 = 0. (10) 

By defining y = ( A’ + B’) + fg2/g,, one has 

Y 3  + M g , /  g3 - 8g2/ &)’I + 4/ (3g3) = 0 
(B’-A’)’= 8/(3g3y). 

The cubic equation has two positive roots if 

but only the largest one provides an acceptable solution of (10) in the region I1 of 
figure 1, corresponding to real values B > A 2 0 .  Furthermore, this solution is con- 
tinuous in the parameters in the same region of the parameter space. One can also 
see that the requirement uI1(  A )  2 0 on its support coincides with (12). 

The condition that the two segments of the support merge into a single one, that 
is, A=0,  is easily seen to reproduce (6) and (8) by identifying B2=4a2.  Therefore 
we conclude that the line y ,  is the natural boundary for the non-perturbative solution 
uldh 1. 

We now return to the determination of the region of positivity for the perturbative 
solution u1(A). A new line y2 arises from the conditions u l ( A o ) = u ~ ( A o ) = O  with 
O <  A,,< 2a. This is given by (6) coupled to 

1 s: 15g3a4+ 2g,a3+ g, = - - 
3 g3 
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with 

1 g2 a = < - - - < 5 a 2 ,  
3 g3 

The two lines y1  and y 2  intersect in PI with coordinates 

which also belongs to the parabola (12) and corresponds to the equality in the LHS of 

Since the perturbative solution u,(A) develops a zero in A o ,  0 < A. < 2 4  on the line 
y z ,  we expect that below yz the model has a non-perturbative solution ull,(A) with 
support on three segments. 

We then examine the possibility that ( 4 ~ ’ -  A 2 ) - ” 2 ~ l ( A )  = 0 at A ” =  2 4  that is 

(14). 

90g3a4+ 12g2a2+gl = O .  (16) 
Equations (16) and (6) define the lines y3 and y4 in figure 1 .  These lines originate at 
the point P2 with coordinates 

In the region bounded by y3 and y4 the cubic equation ( 6 )  has three positive roots, 
with two roots coinciding on the boundary (0< a: < a: = a: on y,, O <  a: = a: < a: on 
y4). Outside this region the cubic equation (6) has only one positive root. We find 
that the continuation of the unique root of the cubic equation from region I across y3 
coincides with the smallest root U :  in the whole region bounded by y3 and y4. Equation 
(16) is solved by the largest root U :  on y3 and by the smallest a: on y4. Equation (8)  
is solved inside this region by the root a:. We conclude that the perturbative solution 
u , ( A )  may be continued across y3 in the whole region up to the boundary y4.  In the 
infinite region bounded by y1 and y4 both solutions uI(A) and w , , ( A )  exist, the physical 
one being that with lower free energy. 

By inserting the value U’ = -Agz/g3 that saturates the RHS of inequality (14) into 
(13) we obtain 

g1g3 = ;g:. (18) 
The only critical point belonging to this parabola is the multicritical point Pz.  

While this work was being completed, several interesting articles were written 
[ 15-17] which discuss matrix models where at certain multicritical points a special 
rescaling is performed, allowing all terms in the topological expansion to have the 
same relevancet. This possibility is particularly interesting for the non-perturbative 
understanding of the superstring theory in non-critical dimension. In [ 15-17] the 
matrix models are analysed by the technique of orthogonal polynomials which is 
equivalent to the saddle-point method of this letter for the leading term in the topological 
expansion, and it is better suited to the non-leading terms. In the perturbative region 
I, our results agree with the analysis of [ 151 and if we rewrite our couplings gi + gi/A 
to agree with the notation of that work, ( 6 )  of this letter coincides with their equation 

U (  R )  = 2g, R + 12g2 R 2  + 60g3R3 = A (19) 

which, together with (18), identifies the multicritical point Pz. 

t We thank D Zanon for providing us with copies of these preprints. 
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In the non-perturbative regions I1 and 111 the technique of orthogonal polynomials 
requires modification: as it was shown in [18], different sets of polynomials must be 
interpolated by distinct functions. We are completing this analysis for region I1 which 
will be published shortly. 

Finally, we remark that in the limit g, + O+ the phase diagram in figure 1 recovers 
the previously known critical points of the quartic model. The point at infinity along 
the line y ,  corresponds to g, = - 2 6  which marked the transition discussed in [ 11,121. 
The point at infinity along the line y4 corresponds to g, = -g:/12 which was identified 
in [lo] with the radius of convergence of the perturbative expansion of the planar 
theory and it was later interpreted as a critical point in statistical mechanics models 
on random graphs. By adding the sextic term to the quartic interaction, as in the 
present letter, this singular point may be better understood as a critical phase transition 
pointt. 
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